

HASAN KALYONCU UNIVERSITY

Faculty of Engineering Course Description Form

COURSE: Cooperative Education					
CODE: FE400	SEMESTER: SPRING				
LANGUAGE: ENGLISH	TYPE: COMPULSORY				
PRE-REQUISITES: -	THEORY	PRACTICAL	CREDIT	ECTS	
CO-REQUISITES: -					
WEEKLY HOURS:	0	8	4	30	

CONTENT OF THE COURSE:

An Internship is a supervised pre-professional learning experience that allows students to apply their skills and knowledge in a professional setting. These experiences are designed to enhance the student's preparedness for an intended career with a business, industry, or government agency.

Cooperative education is a partnership between academic institutions and the practical world of work. For students, it is a formal education and practical experience in business, industry or government agency, a blend of theory and application, new skills and knowledge, a competitive salary, and a validation of career choice. Cooperative education is different from internship. It lasts 14 weeks (one semester). A co-op student of alternate semester should work and study as a full-time study.

OBJECTIVE OF THE COURSE:

To increase understanding of classroom theory through hands-on Application.

To gain exposure to potential career opportunities.

To sharpen interpersonal skills.

To improve study and design ability by adding experience in the field of study.

WEEKLY	SCHEDULE
Week	Topics
1	Industrial Field Work
2	Industrial Field Work
3	Industrial Field Work
4	Industrial Field Work – (1.Hang-out callings)
5	Industrial Field Work – (1.Hang-out callings)
6	Industrial Field Work – (1.Hang-out callings)
7	Industrial Field Work – Submission of interim report.
8	Industrial Field Work – (2.Hang-out callings)
9	Industrial Field Work – (2.Hang-out callings)
10	Industrial Field Work – (2.Hang-out callings)
11	Industrial Field Work
12	Industrial Field Work
13	Industrial Field Work
14	Industrial Field Work - Submission of final report.

TEXTBOOK: Project Documentations

EVALUATION SYSTEM:							
IN-TERM STUDIES	QUANTITY	PERCENTAGE (%)					
Midterm Exam	1	20					
Homework	1	30					
Laboratory works							
Quiz	2	20					
Final Exam	1	30					
TOTAL	5	100					
CONTRIBUTION OF	4	70					
INTERM STUDIES TO							
OVERALL GRADE							
CONTRIBUTION OF FINAL	1	30					
EXAMINATION TO							
OVERALL GRADE							
TOTAL	5	100					

COURSE CATEGORY:	PERCENTAGE (%)
Mathematics and Basic Sciences	30
Engineering	40
Engineering Design	30
Social Sciences	

TABLE OF ECTS / WORKLOAD:						
Activities	QUANTITY	Duration (Hour)	Total Workload			
Course Duration						
Hours for off-the-classroom study (Pre-study, practice)	14	60	840			
Laboratory works						
Mid-term	1	20	20			
Final examination	1	25	25			
Homework						
Quiz						
Total Work Load			885			
Total Work Load / 30			29,5			
ECTS Credit of the Course			30			

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
LO1	0	0	0	0	0	0	0	0	0	3	0
LO2	0	0	0	0	0	0	0	0	3	0	0
LO3	0	0	0	0	0	3	0	0	0	0	0
	PO: Program Outcomes LO: Learning Outcomes										
	Values: 0: None 1: Low 2: Medium 3: High										

INSTRUCTOR(S):	
FORM PREPARATION DATE:	22.05.2019

LEARNING OUTCOMES OF THE COURSE:

LO1: Students can gain industrial application experience.

LO2: Students act through the informations which are professional ethics, work areas and conditions LO3: Students can gain the integration of working as team.

PROGRAM OUTCOMES:

PO1: Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied knowledge in these areas in complex engineering problems.

PO2: Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modeling methods for this purpose.

PO3: Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way as to meet the desired result; ability to apply modern design methods for this purpose.

PO4: Ability to devise, select, and use modern techniques and tools needed for analyzing and solving complex problems encountered in engineering practice; ability to employ information technologies effectively.

PO5: Ability to design and conduct experiments, gather data, analyze and interpret results for investigating complex engineering problems or discipline specific research questions.

PO6: Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually.

PO7: Ability to communicate effectively in Turkish, both orally and in writing; knowledge of a minimum of one foreign language; ability to write effective reports and comprehend written reports, prepare design and production reports, make effective presentations, and give and receive clear and intelligible instructions.

PO8: Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself.

PO9: Consciousness to behave according to ethical principles and professional and ethical responsibility; knowledge on standards used in engineering practice. **PO10:** Knowledge about business life practices such as project management, risk management, and change management; awareness in entrepreneurship, innovation; knowledge about sustainable development.

PO11: Knowledge about the global and social effects of engineering practices on health, environment, and safety, and contemporary issues of the century reflected into the field of engineering; awareness of the legal consequences of engineering solutions.